
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:1457–1463
Published online 6 November 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1647

Conservative and non-conservative arbitrary Lagrangian–Eulerian
forms for ventricular flows

D. A. Nordsletten1,2,∗,†, P. J. Hunter2 and N. P. Smith1,2

1Oxford Computing Laboratory, University of Oxford, Parks RD, Oxford OX1 3JP, U.K.
2Bioengineering Institute, University of Auckland, Uniservices Building, Level 6,

70 Symonds Street, New Zealand

SUMMARY

Blood flow through the heart is driven by a complex motion of the endocardial heart wall, where dilation
or contraction results in filling and ejection. Boundary-driven flows of this type are inherently sensitive
to conservation principles. Considering the finite element approach to the arbitrary Lagrangian–Eulerian
(ALE) form of the Navier–Stokes equations, we present analysis addressing critical assumptions concerning
conservation and numerical approximation which affect the accuracy and stability of ALE schemes for
boundary-driven flows. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of computational fluid mechanics is emerging as a key component to furthering our
understanding of cardiac function both theoretically and clinically. A number of mathematical
models, using immersed boundary [1, 2], finite difference [3], finite volume [4, 5], and finite element
(FE) techniques [6], have been presented in the literature on this application. Of these models
which consider flow, the arbitrary Lagrangian–Eulerian (ALE) form of the Navier–Stokes equation
(NSE) is the predominant formulation.

The moving description on which ALE conservation laws are posed is particularly attractive for
boundary-driven flow problems. However, embedded within this form are a number of important
intricacies. Prior to solving complex boundary-driven flow problems, such as those within the heart
chambers, it is pertinent to carefully consider the numerical implementation of these forms.
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In the remainder of this paper, we develop the conservative/non-conservative ALE form for a
Newtonian fluid in both strong and weak forms, analyzing their spatial and temporal complexities.
The ramification of these results, in terms of stability and accuracy, is finally highlighted with
numerical results for both a test problem and cardiac ventricular simulations.

2. CONSERVATIVE AND NON-CONSERVATIVE ALE–NSE FORMS

Consider the general physical domain, �t ⊂Rd ×[0,T ] (with boundary �t ), over which we
consider the fluid problem, and an arbitrary computational domain �⊂Rd . We will refer
to x and � as the spatial coordinates of �t and �, respectively. These domains are related
by a bijective mapping, Pt :�→�t , which maintains boundary congruity through time (i.e.
Ps ◦P−1

t (�t ) :=�s ∀(s, t)∈[0,T ]). Further, the mapping has a deformation gradient tensor
Ft :=∇�Pt and mapping Jacobian Jt :=det |Ft | (i.e. dx=Jt d�). Let v,w :�×[0,T ]→
Rd and p :�×[0,T ]→R be the fluid velocity, domain velocity (w :=�tPt ), and pressure, respec-
tively (where �t (·)=(�/�t)(·)|x=Pt (�)). The NSE, which assumes a Newtonian stress law [7],
�=−pI−�∇x ·v+�(∇xv+v∇x ), and constant density � with respect to space and time, is given
by the following equations‡

��tv+�(v−w) ·∇xv+∇x p−��xv=�v
(∇x ·(w−v)−J−1

t �t Jt
)+(�+�)∇x∇x ·v (1)

∇x ·v=−J−1
t �t Jt +∇x ·w (2)

where � is the bulk viscosity (commonly taken as �=−2�/3) and � the viscosity. Unlike the
Eulerian form of NSE, the general ALE form does not result in the identity ∇x ·v=0 unless the
RHS of Equation (2) i.e. the space conservation law (SCL) is equivalently zero [8]. A consequence
of the ALE form, the terms on the RHS of Equations (1) and (2) account for sources or sinks in
space due to domain movement. When these terms are removed on the LHS [8], Equations (1)
and (2) are equivalent to the so-called non-conservative forms [6].

The conservative weak form (Equations (3) and (4)) is derived by the integration of Equations (1)
and (2) over� and the time interval I =[m,n], while the non-conservative weak form (Equations (5)
and (6)) is integrated over the � at a time point n. Typically, the RHS of Equation (6) is neglected
as zero, which is generally applicable under exact integration.

�(v,u)�n −�(v,u)�m +�(v ·∇xv,u)�I −�(w ·∇xv,u)�I −(p,∇x ·u)�I +�(∇xv,∇xu)�I

+B�I (v, p,u)=�(v∇x ·w,u)�I −�(v∇x ·v,u)�I −((�+�)∇x ·v,∇x ·u)�I (3)

(∇x ·v, z)�I =(z,1)�m −(z,1)�n +(∇x ·w, z)�I (4)

�(�tv,u)�n +�(v ·∇xv,u)�n −�(w ·∇xv,u)�n −(p,∇x ·u)�n +�(∇xv,∇xu)�n

+B�n (v, p,u)=−�(v∇x ·v,u)�n −((�+�)∇x ·v,∇x ·u)�n (5)

(∇x ·v, z)�n =−�t (z,1)�n +(∇x ·w, z)�n (6)

‡For completeness, we assume temperature independence and constant viscosity coefficients.
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Where (·, ·)Vs , given generally in Equation (7),§ relates to the L2-inner product and BVI (v, p,u)=
((pI−�∇xv−(�+�)∇x ·vI) ·n,u)VI (n being the time-varying boundary normal of �I ).

(a,b)Vs =
∫
Vs
a�bdx, (a,b)VI =

∫
I

(a,b)V� d� (7)

Here v,u∈H1(�), w∈L2(�), and p, z∈L2(�) at any discrete time points m,n∈[0,T ] subject
to conditions in Equations (3) and (4). Thus, the state variables v,w, and p must be mapped
(x=PI (�)) to apply the integral and gradient operators in �I . This rather straightforward result
has significant implications for the evaluation of the associated terms over space and time.

2.1. Spatio-temporal complexity of the Galerkin weak form

Dealing with approximate FE solutions to our state variables, we use polynomial bases (subspaces
of H1(�), L2(�), or L2(�)) to describe the spatial and/or temporal variation. Although typically
thought of in some discrete sense, we may consider an order of temporal complexity (the discrete
case being zero order in time). We assume that Pt ∼O(�P;�P), v̂∼O(�v;�v), ŵ∼O(�P;�P−1),
and p̂∼O(�p;�p) are of the given orders in space and time, respectively. The bases for u and z
being constant with respect to �t (i.e. a fixed point in �), are thus u∼O(�v;0) and z∼O(�p;0).
Further, Ft ∼O(sP;�P) and Jt ∼O(dsP;d�P), where sP=�P unless the basis is reduced to a full
order under differentiation (in this case sP =�P−1).¶

As �t varies in time, both the integral and gradient operators assume a time-dependent relation
with their static � equivalents (Equation (8)). Thus, spatial integration adds a spatio-temporal
complexity of O(dsP;d�P) to the integrand. Owing to its relation to the deformation gradient
tensor (Equation (8)), all spatial gradients with respect to ∇x inherit additional spatial and temporal
complexity of O((d−1)sP)/O(dsP) and O((d−1)�P)/O(d�P), respectively.∫

�t

dx :=
∫

�
Jt d�, F−T

t ∇� :=∇x (8)

Using these results, we may determine the spatial and temporal integral complexities of all terms
based on the complexity of the mapping and state variables selected (Table I). It is clear that with
complex element types, mapping functions and high-order spatio-temporal interpolations, the cost
of calculating NSE terms increases significantly. Additionally, the viscous stress terms that include
second-order differential operators in strong form give rise to irreducible rational functions. In
many cases, the use of tetrahedral elements reduces the viscous term denominator to an element-
wise constant spatial function. A similar reduction, for the conservative form, cannot be conducted
for temporal accuracy, as this would imply the ALE mapping, Pt , to be constant (i.e. describe an
Eulerian frame). From Equation (4), we deduce that given ŵ, �v>�P−1 is required for exactness.
The weak form of mass conservation in Equations (4) and (6) also illustrates that the RHS is only
zero when the terms are integrated precisely in time [9]. Thus to conserve mass, we must use
appropriate integration schemes. This result is important and precedes any reductions that suppose
a divergence-free velocity field. The ramifications for violating this result can be significant both
in terms of solution accuracy and stability.

§The � operator of Equation (7) assumes multiplication, ·, : for scalar, vector, and tensors a and b, respectively.
¶Typically, sP=�P−1 for d-simplex elements and sP=�P for quadrilateral and hexahedral elements.
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Table I. ALE–NSE weak form spatio-temporal complexity of the
conservative (c) and non-conservative (nc) forms.

Term (c/nc) Spatial order (c,nc) Temporal order (c)

(3)−1,2(5)−1,6 O(2�v+dsP) —

(3)−3,8(5)−2 O(2�v+sv+(d−1)sP)) O(2�v+(d−1)�P)

(3)−4,7(5)−3 O(�v+sv+(d−1)sP+�P) O(�v+d�P−1)

(3)−5(5)−4 O(�p+sv+(d−1)sP) O(�p+(d−1)�P)

(3)−6,9(5)−5,7 O(2sv+2(d−1)sP)
O(dsP)

O(�v+2(d−1)�P)
O(2�P)

(4)−1(6)−1 O(�p+sv+(d−1)sP) O(�v+(d−1)�P)

(4)−2,3(6)−2 O(�p+dsP) —

(4)−4(6)−3 O(�p+dsP) d�P−1

Note: Numbers correspond to terms as they appear in the indicated
equations, excluding the boundary integrals. We note that the spatio-
temporal complexity of BVI (v, p,u) has equivalent order, term-wise, to
those from which it arose through integration by parts.

2.2. Galerkin ALE–NSE FE method

The method developed solves the fully coupled ALE–NSE conservative and non-conservative
forms over linear/curvilinear d-simplex/polytopes, T�/H�, of �t under the mapping Pt . An
implicit first-order backward Euler approach was taken due to more favorable stability [10]. The
velocity and pressure test spaces used are the general Taylor–Hood basis, which satisfy the inf–sup
condition [11].

Using Table I, spatial and temporal quadratures were selected to integrate (to machine precision)
all terms in conservative and non-conservative forms, excluding the viscous stress term. As we
employed a backward Euler scheme, a 2-point Gaussian quadrature was sufficient for all but the
viscous terms in the conservative form (Q2

t ). A 5-point quadrature (Q5
t ) provided the best results,

as higher quadratures incurred more significant computational cost with little or no improvement in
calculation accuracy. We posed the fully coupled problem by analytically calculating the Jacobian
matrix and solving the non-linear system with a global Newton–Raphson iteration [12]. MUMPS‖
and BommerAMG∗∗ were selected to solve the linearized matrix system.

3. RESULTS AND DISCUSSION

The significance of those terms that delineate the non-conservative (nc) and fully conservative
(c) forms, the SCL as well as the impact of their calculation, is unquantified in the literature. To
illustrate their importance, we consider the problem of constant axial flow through a rectangular
hexahedron under transient deformation. Various inhomogeneous deformations were applied (such
that ∇x ·ŵ 
=0) by adding sinusoidal contractions and expansions of the domain in each dimension.
Dirichlet (̂v=U (1,0,0)T at the inlet and side walls), symmetry (top and bottom), and zero normal

‖Available from http://graal.ens-lyon.fr/MUMPS/avail.html.
∗∗Available from http://www.llnl.gov/CASC/linear solvers/pubs.html.
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Figure 1. (a) Error for constant flow through a rectangular box, T�, at various R using P2−P1

Taylor–Hood elements for the state variables. Space was discretized using linears. Spatial quadrature is
held fixed, with varying temporal quadrature (where Qn

s , n>5). (b) Error for constant flow through a
rectangular box, H�, at various R using P2−P1 Taylor–Hood elements for the state variables. Space
was discretized using trilinears (lin) and triquadratics (quad). Spatial quadrature is held fixed, with
varying temporal quadrature (where Qn

s , n>5). (c) Error for constant flow through a rectangular box,
H�, at various R using P3−P2 Taylor–Hood elements for the state variables. Space was discretized
using tricubics (cubic). Spatial quadrature was given as an n-point Gaussian quadrature rule (Qn

s ), with
varying temporal quadrature. (d) Cross section of 3D simulated ventricular flow at end diastole. Left: (c)
Simulation showing two vortices, velocity magnitude (0cm/s∼white to 10cm/s∼black). Right: Vector
cones showing difference in velocity with proper and improper integration, magnitude (0% velocity∼white

to 10% velocity∼black).
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stress (outlet) boundary conditions were applied. With an initial velocity v̂(�0)=U (1,0,0)T, these
boundary conditions preserve constant flow. For comparison, the simulations were only run to the
first time step (�t ).

The flow was discretized using tetrahedral (T�) and hexahedral elements (H�). The spatial
discretization was taken as linear for T�, and linear/triquadratic/tricubic for H�. The velocity
and pressure spaces (general Taylor–Hood [11]) were P2−P1 or P3−P2. Results for the (c) and
(nc) forms were calculated under varying n-point spatial quadratures (Qn

s ), timescales (�t ), domain
velocities (W =‖ŵ‖∞) and Reynolds numbers. Further, results for the (c) form were calculated for
different temporal quadrature (Qn

t ,Q
2
t , or the hybrid Q2

t +Q5
t scheme of Section 2.2). Figure 1(a)

and (b) plots the relationship of Reynolds number (R) and the scaled error. Dimensionalization†† of
Equation (1) provided the relevant scaling as seen numerically.

All (c) forms but those with Q2
t or higher temporal quadrature lost stability for RW 2�t>102,

regardless of element/basis selection. Schemes with Q2
t or higher temporal quadrature demon-

strated improved accuracy and stability for RW 2�t �105. Further, using a higher quadrature form
(Q5

t ) for the viscous terms resulted in a two-fold increase in accuracy. Additionally, both (c) and
(nc) forms can demonstrate instability when the spatial quadrature rule is insufficient to satisfy the
discretized SCL (RHS of Equations (4) and (6)) as seen in Figure 1(b).

Inclusion of div(̂v) terms to momentum showed no improvement in results. This is likely an
artifact of the basis being able to capture the solenoidicity of the field due to its simplicity (i.e.
constant flow) and is not expected for more complex flows.

Finally, we considered the (c) Q1
t and (c) Q2

t +Q5
t forms for ventricular flows. Figure 1(d),

showing snapshots at the end of ventricular filling (end diastole), demonstrates the deleterious
effects in solution accuracy due to improper conservation and spatio-temporal treatment.

4. CONCLUSION AND FUTURE WORK

As demonstrated, the difference in results between non-conservative and conservative schemes
as well as their spatial and temporal treatments can have a negative impact on solution accuracy
(Figure 1(a)) and stability. These results become more pronounced (Figure 1(d)) and difficult to
discern as erroneous for complex flow problems. The methodology described in Section 2.2 is
shown to vastly improve the solution accuracy (upwards of 12 orders of magnitude) and stability
by considering the implicit conservative and non-conservative weak forms. This scheme provides a
more rigorous and stable platform for considering these complex boundary-driven flows and their
extension into coupled fluid–solid problems.

Characterizing ventricular fluid flow is increasingly important for clinical applications. Further,
applications in tissue mechanics and fluid–solid coupling, which delves into the complex ques-
tions of feedback and control, is an important step in understanding heart physiology. Using
the information developed here, we will integrate this ALE form of NSE with the tissue-based
continuum-based model of Nash and Hunter [13].

††Dimensionalized according to the following scalings (x, t,v,w, p)=(W�t ,U,U,W,�U2�−1
t ).
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